
FORDYCA Documentation
Release 2.35.0.0

John Harwell

Apr 23, 2023

CONTENTS:

1 Setup 1
1.1 Building The Code . 1

2 XML Configuration 3
2.1 Controller XML Configuration . 3
2.2 Loop Functions XML Configuration . 10
2.3 XML Conventions . 13

3 Contributing 15
3.1 Parser Tutorial . 15

4 Other Projects (in descending probability of interest) 19

i

ii

CHAPTER

ONE

SETUP

1.1 Building The Code

Head over to https://github.com/swarm-robotics/bootstrap.git to download and build FORDYCA and all of its depen-
dencies.

1.1.1 Local Runtime Setup

If you have not successfully completed the build part of the setup, do that first. These steps will not work otherwise.

After successful compilation, follow these steps to setup the FORDYCA runtime environment and run a basic foraging
scenario on your local laptop.

Note: If you don’t want to go through this runtime setup each time you start a new shell, add whatever commands you
run in the terminal to $HOME/.bashrc (or whatever the startup file for your shell is) to have them run automatically
when you login.

1. Update the system dynamic library search paths so the OS can find the libraries that the ARGoS executable
requires (supposedly ARGoS will do this for you when you install it via ldconfig to /usr/local, but many
people still have trouble with it). On bash:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/.local/system/lib/argos3:$HOME/.local/
→˓lib/argos3

Assuming you passed --sysprefix=$HOME/.local/system and --rprefix=$HOME/.local to
bootstrap.sh. If you passed something else, then update the path above accordingly.

2. Update your PATH so that the shell can find ARGoS. On bash:

export PATH=$PATH:/opt/.local/system/bin

Assuming that you passed --sysprefix=$HOME/.local/systembin to bootstrap.sh. If you passed some-
thing else, then update the above path accordingly.

3. Set the ARGOS_PLUGIN_PATH variable to contain (1) the path to the directory containing the libfordyca.so
file, (2) the path to the ARGoS libraries. On bash, that is:

export ARGOS_PLUGIN_PATH=/$HOME/.local/system/lib/argos3/lib:$HOME/research/fordyca/
→˓build/lib

1

https://github.com/swarm-robotics/bootstrap.git

FORDYCA Documentation, Release 2.35.0.0

Assuming that you passed --sysprefix=$HOME/.local/system --rroot=$HOME/research to
bootstrap.sh script when you built FORDYCA. If your paths are different, modify the above paths ac-
cordingly. Note that you need BOTH of these terms in the path, because this defines the ENTIRE search space
for argos to look for libraries (including its own core libraries).

4. Unless you compile out event reporting (built FORDYCA with optimizations AND with LIBRA_ER=NONE passed
to cmake), you will need to set the path to the log4cxx configuration file, which tells FORDYCA which classes
should have logging turned on, and how verbose to be. On bash that is:

export LOG4CXX_CONFIGURATION=$HOME/research/fordyca/log4cxx.xml

Assuming you have cloned and built FORDYCA in $HOME/research. If you cloned and built it somewhere
else, then update the above path accordingly.

5. cd to the ROOT of the FORDYCA repo, and run the demo experiment:

argos3 -c $HOME/research/fordyca/exp/demo.argos

This should pop up a nice GUI from which you can start the experiment (it runs depth0 dpo foraging by default).
If the simulation seems to start but no GUI appears, verify that the <visualization> subtree of demo.argos
file is not commented out.

Important: You should (probably) have n_threads set to 0 in the .argos file or omit the attribute altogether
when running debug builds. When debugging you want things to be executed in a deterministic manner, and non-
deterministic parallel execution with multiple threads should be used only for optimized builds once you are confident
of code correctness.

Runtime Issues

Before reporting a bug, try:

1. If you are getting a segfault when running ARGoS, verify that if you are running with Qt visualizations that the
threadcount is 0 (Qt5 cannot run with multiple threads without segfaulting).

2. Verify you don’t have any anaconda bits in your PATH. Depending on version, anaconda loads a DIFFERENT
version of the Qt than fordyca uses, resulting in a dynamic linking error.

3. Make sure you have the necessary environment variables set correctly.

4. If you get a std::bad_cast, boost::get, or similar exception, then verify that the name of [controller, loop
functions, qt user functions], match, as specified in XML Configuration are correct.

1.1.2 MSI Setup

Head over to SIERRA, and follow the MSI setup instructions over there. Don’t try to run on MSI without SIERRA.
Just don’t.

2 Chapter 1. Setup

https://swarm-robotics-sierra.readthedocs.io

CHAPTER

TWO

XML CONFIGURATION

2.1 Controller XML Configuration

The following controllers are available:

Controller Required Loop Functions Notes
crw d0 CRW = Correlated Random Walk.
dpo d0 DPO = Mapped Decaying Pheromone Ob-

ject. Uses pheromones to track objects
within the arena.

mdpo d0 MDPO = Mapped Decaying Pheromone Ob-
ject. DPO + mapped extent of the arena
tracking relevance of individual cells within
it.

odpo d0 ODPO = Oracular DPO. Has perfect infor-
mation about blocks in thye arena.

omdpo d0 OMDPO = Oracular MDPO. Has perfect in-
formation about blocks in the arena.

bitd_dpo d1 Greedy task partitioning + DPO. Requires
static caches to also be enabled.

bitd_odpo d1 Greedy task partitioning + DPO + oracle
(perfect knowledge, as configured). Re-
quires static caches, oracle to be enabled.

bitd_mdpo d1 Greedy task partitioning + MDPO. Requires
static caches, oracle to be enabled.

bitd_omdpo d1 Greedy task partitioning + MDPO + ora-
cle (perfect knowledge, as configured). Re-
quires static caches, oracle to be enabled.

birtd_dpo d2 Recursive greedy task partitioning + DPO.
Requires dynamic caches to be enabled.

birtd_mdpo d2 Recursive greedy task partitioning + MDPO.
Requires dynamic caches to be enabled.

birtd_odpo d2 Recursive greedy task partitioning + DPO
+ oracle (perfect knowledge, as configured).
Requires dynamic caches, oracle to be en-
abled.

birtd_omdpo d2 Recursive greedy task partitioning + MDPO
+ oracle (perfect knowledge, as configured).
Requires dynamic caches, oracle to be en-
abled.

3

FORDYCA Documentation, Release 2.35.0.0

The following root XML tags are defined under <params>.

Root XML Tag Mantory For ? Notes
perception All but CRW See COSM docs also; only augmented

slightly here.
block_sel_matrix All but CRW Parameters used by robots when selecting

which block to acquire as part of the task
they are currently executing.

cache_sel_matrix All d1, d2 controllers Parameters used by robots when selecting
which cache to acquire as part of the task
they are currently executing.

sensing_subsystemQ3DAll controllers See COSM docs.
actuation_subsystem2DAll controllers See COSM docs.
strategy All controllers Parameters for robot exploration, collision

avoidance, etc. strategies.
task_executive d1, d2 controllers See COSM docs.
task_alloc d1, d2 controllers See COSM docs.

2.1.1 block_sel_matrix

• Required child attributes if present: nest.

• Required child tags if present: none.

• Optional child attributes: none.

• Optional child tags: [block_priorities, pickup_policy].

XML configuration:

<block_sel_matrix
nest="6, 3">
<block_priorities>
...
</block_priorities>
<pickup_policy>
...
</pickup_policy>

</block_sel_matrix>

nest - The location of the nest.

block_sel_matrix/block_priorities

• Required by: None. If omitted, the default priority values shown below are used.

• Required child attributes if present: nest.

• Required child tags if present: none.

• Optional child attributes: [cube, ramp].

• Optional child tags: none.

XML configuration:

4 Chapter 2. XML Configuration

https://swarm-robotics-cosm.readthedocs.io
https://swarm-robotics-cosm.readthedocs.io
https://swarm-robotics-cosm.readthedocs.io
https://swarm-robotics-cosm.readthedocs.io
https://swarm-robotics-cosm.readthedocs.io

FORDYCA Documentation, Release 2.35.0.0

<block_sel_matrix>
...
<block_priorities
cube="1.0"
ramp=1.0/>
...

</block_sel_matrix>

• cube - The priority value used as part of block utility calculation for cube blocks during block selection. Default
if omitted: 1.0

• ramp - The priority value used as part of block utility calculation for ramp blocks during block selection. Default
if omitted: 1.0

block_sel_matrix/pickup_policy

• Required by: None.

• Required child attributes if present: policy.

• Required child tags if present: none.

• Optional child attributes: [cluster_proximity, prox_dist].

• Optional child tags: none.

XML configuration:

<block_sel_matrix>
...
<pickup_policy
policy=""
prox_dist="FLOAT"/>
...

</block_sel_matrix>

• policy - The policy to use to restrict (1) the conditions under which robots can pick up a block that they en-
counter, (2) which blocks are considered valid for acquisition. Valid values are:

– cluster_proximity - Only allow blocks which are within prox_dist from the average of the positions
of the blocks currently known to a robot to be picked up. Only makes sense for object distributions in which
objects are clumped into clusters; used to help d2 robots not to pickup the blocks other robots have dropped
in order to start caches.

– "" - An empty string to disable if the the tag pickup_policy is present.

• prox_dist - The minimum distance measure for usage with cluster_proximity pickup policy.

2.1. Controller XML Configuration 5

FORDYCA Documentation, Release 2.35.0.0

2.1.2 cache_sel_matrix

• Required by: [d1, d2] controllers.

• Required child attributes if present: all.

• Required child tags if present: none.

• Optional child attributes: none.

• Optional child tags: pickup_policy.

XML configuration:

<cache_sel_matrix
cache_prox_dist="FLOAT"
nest_prox_dist="FLOAT"
block_prox_dist="FLOAT"
site_xrange_dist="FLOAT:FLOAT"
cache_prox_dist="FLOAT:FLOAT">

<pickup_policy>
...
</pickup_policy>

</cache_sel_matrix>

• cache_prox_dist - When executing the Cache Finisher task, the constraint applied to new cache selection for
how close the chosen new cache can be to known existing caches. Should be at least twice the size of a cache for
Cache Finisher robots to behave properly and not get stuck in infinite loops attempting to drop a block too close
to a known cache.

• block_prox_dist - When executing the Cache Starter task, the constraint applied to cache site selection for
how close the chosen cache site can be to known blocks.

• nest_prox_dist - When executing the Cache Starter task, the constraint applied to cache site selection for how
close the chosen cache site can be to the nest.

• site_xrange - The valid X range for cache site selection (should be a subset of the full arena X size, to avoid
robots being able to select locations by arena boundaries).

• site_yrange - The valid Y range for cache site selection (should be a subset of the full arena Y size, to avoid
robots being able to select locations by arena boundaries).

cache_sel_matrix/pickup_policy

• Required by: [d1, d2] controllers.

• Required child attributes if present: policy.

• Required child tags if present: none.

• Optional child attributes: [timestep, cache_size].

• Optional child tags: none.

XML configuration:

<cache_sel_matrix>
...
<pickup_policy

policy="time|cache_size|cache_duration"
(continues on next page)

6 Chapter 2. XML Configuration

FORDYCA Documentation, Release 2.35.0.0

(continued from previous page)

timestep="INTEGER"
cache_size="INTEGER"/>

...
</cache_sel_matrix>

• policy - The policy to use to restrict (1) the conditions under which robots can pick up from a cache that they
encounter, (2) which caches are considered valid for acquisition. Valid values are:

– cache_size - Only allow robots to pickup from caches with at least cache_size blocks in them. Robots
intending to drop blocks in caches are not restricted.

– cache_duration - Only allow robots to pickup from caches after they have existed for at least time
timesteps.

– time - Only allow robots to pickup from caches after timestep timesteps have elapsed during simulation.
Robots intending to drop blocks in caches are not restricted.

– Can also be an empty string to disable the cache pickup policy if the pickup_policy tag is present.

2.1.3 strategy

• Required by: All controllers.

• Required child attributes if present: None.

• Required child tags if present: [explore, nest, blocks].

• Optional child attributes: [caches]

• Optional child tags: None.

XML configuration:

<strategy>
<blocks>
...

</blocks>
<caches>
...

</caches>
<nest>
...

</nest>
</strategy>

perception

• Required child attributes if present: [type].

• Required child tags if present: none.

• Optional child tags: [rlos, dpo, mdpo]

• Optional child attributes: none.

XML configuration:

2.1. Controller XML Configuration 7

FORDYCA Documentation, Release 2.35.0.0

<perception
type="STRING">
<rlos>
...

</rlos>
<dpo>

...
<dpo/>
<mdpo>

...
<mdpo/>

</perception>

• type - The perception type to use.

perception/dpo

Parameters for the Decaying Pheromone Object (DPO) perception type.

• Required child attributes if present: none.

• Required child tags if present: [rlos, pheromone].

• Optional child tags: none.

• Optional child attributes: none.

XML configuration:

<perception>
...
<dpo>
<rlos>
...

</rlos>
<pheromone>
...

</pheromone
</dpo>
...

</perception>

perception/dpo/pheromone

Parameters controlling the decay of the pheromone-based memory for the Decaying Pheromone Object (DPO) percep-
tion model.

• Required child attributes if present: rho.

• Required child tags if present: none.

• Optional child attributes: repeat_deposit.

• Optional child tags: none.

XML configuration:

8 Chapter 2. XML Configuration

FORDYCA Documentation, Release 2.35.0.0

<dpo>
...
<pheromone rho="FLOAT"

repeat_deposit="false"/>
...

</dpo>

• rho How fast the relevance of information about a particular cell within a robot’s 2D map of the world loses
relevance. Should be < 1.0.

• repeat_deposit - If true, then repeated pheromone deposits for objects a robot already knows about will be
enabled. rho should be updated accordingly, probably to a larger value to enable faster decay. Default if omitted:
false.

perception/mdpo

Parameters for the Mapped Decaying Pheromone Object (MDPO) perception model.

• Required child attributes if present: none.

• Required child tags if present: [rlos, pheromone].

• Optional child tags: none.

• Optional child attributes: none.

XML configuration:

<perception>
...
<mdpo>
<rlos>
...

</rlos>
<pheromone>
...

</pheromone
</mdpo>
...

</perception>

2.1.4 Additional notes to COSM controller docs

task_alloc/stoch_nbhd1

• tab_sel child tag required by d2 controllers

2.1. Controller XML Configuration 9

FORDYCA Documentation, Release 2.35.0.0

task_alloc/task_exec_estimates

Valid values for <task_name> are:

• generalist

• collector

• harvester

• cache_starter

• cache_finisher

• cache_transferer

• cache_collector

2.2 Loop Functions XML Configuration

The following root XML tags are defined under <loop_functions>:

Root XML Tag Mandatory For? Description
output All See COSM docs.
convergence None See COSM docs.
arena_map All See COSM docs.
temporal_variance None See COSM docs.
visualization None See COSM docs.
oracle_manager None See COSM docs.
caches Depth1, depth2 controllers Parameters for the use of caches in the arena.

Any of the following attributes can be added under the metrics tag in place of one of the <append>,<create>,
<truncate> tags, in addition to the ones specified in COSM. Not defining them disables metric collection of the given
type.

Extend the temporal variance capabilities in COSM with caches:

2.2.1 temporal_variance/env_dynamics/caches

• Required by: none.

• Required child attributes if present: none.

• Required child tags if present: none.

• Optional child attributes: none.

• Optional child tags: [usage_penalty].

XML configuration:

<temporal_variance>
...
<caches>

<usage_penalty>
...

(continues on next page)

10 Chapter 2. XML Configuration

https://swarm-robotics-cosm.readthedocs.io
https://swarm-robotics-cosm.readthedocs.io
https://swarm-robotics-cosm.readthedocs.io
https://swarm-robotics-cosm.readthedocs.io
https://swarm-robotics-cosm.readthedocs.io
https://swarm-robotics-cosm.readthedocs.io
https://swarm-robotics-cosm.readthedocs.io
https://swarm-robotics-cosm.readthedocs.io

FORDYCA Documentation, Release 2.35.0.0

(continued from previous page)

</usage_penalty>
</caches>
...

</temporal_variance>

2.2.2 temporal_variance/caches/usage_penalty

• Required by: none.

• Required child attributes if present: none.

• Required child tags if present: waveform.

• Optional child attributes: none.

• Optional child tags: none.

XML configuration:

<caches>
...
<usage_penalty>
<waveform>

...
</waveform>
</usage_penalty>
...

</caches>

• waveform - Parameters defining the waveform of cache usage penalty (picking up/dropping).

Extend the arena map capabilities in COSM with caches:

arena_map/caches

• Required by: [depth1, depth2 controllers].

• Required child attributes if present: [dimension, strict_constraints].

• Required child tags if present: none.

• Optional child attributes: none.

• Optional child tags: [static, dynamic].

XML configuration:

<arena_map>
...
<caches

dimension="FLOAT"
strict_constraints="true">
<static>

...
</static>
<dynamic>

(continues on next page)

2.2. Loop Functions XML Configuration 11

https://swarm-robotics-cosm.readthedocs.io

FORDYCA Documentation, Release 2.35.0.0

(continued from previous page)

...
</dynamic>

</caches>
...

</arena_map>

• dimension - The dimension of the cache. Should be greater than the dimension for blocks.

• strict_constraints - If true, then created caches will not be checked for overlap with block clusters in the
arena after creation (this happens in non-error contexts with static caches and RN block distributions, for exam-
ple). Other sanity checks will still be performed and appropriate error messages issued; however, an “OK” return
code will always be returned.

For dynamic cache creation, if true, cache creation will be strict, meaning that any caches that fail validation
after creation will be discarded. This can happen because when robots select cache sites they only consider the
distance between the center of existing caches/blocks/nests/etc, and do not take the extent into consideration.
Depending on what the values of the various proximity constraints robots use when searching for a cache site,
validation can fail after cache creation.

For dynamic cache creation, if false, then dynamically created caches will be kept regardless if they violate
constraints or not, which MIGHT be OK, or MIGHT cause issues/segfaults. Provided as an option so that it will
be possible to more precisely duplicate the results of papers run with earlier versions of FORDYCA which had
more bugs.

For static cache creation, caches are never discarded; however if one or more caches fail validation after creation,
an assert will be triggered if set to true.

Default if omitted: true.

2.2.3 arena_map/caches/static

• Required by: [depth1 controllers].

• Required child attributes if present: [enable].

• Required child tags if present: none.

• Optional child attributes: [size, respawn_scale_factor].

• Optional child tags: none.

XML configuration:

<caches>
...
<static

enable="false"
size="INTEGER"
respawn_scale_factor="FLOAT"/>

...
</caches>

This tag is required for depth1 loop functions. If the tag is present, only the enable attribute is required; all other
attributes are parsed iff enable is true.

• enable - If true, then a single static cache will be created in the center of the arena. The cache will be replenished
by the loop functions if robots deplete it, under certain conditions.

12 Chapter 2. XML Configuration

FORDYCA Documentation, Release 2.35.0.0

• size - The number of blocks to use when (re)-creating the static cache. Must be >= 2.

• respawn_scale_factor - A scale factor controlling how quickly the probability of static cache respawn will
grow once the conditions for respawning are met.

2.2.4 arena_map/caches/dynamic

• Required by: [depth2 controllers].

• Required child attributes if present: enable.

• Required child tags if present: none.

• Optional child attributes: [min_dist, min_blocks, robot_drop_only].

• Optional child tags: none.

XML configuration:

<caches>
...
<dynamic

enable="false"
min_dist="FLOAT"
min_blocks="INTEGER"
robot_drop_only="false" />

...
</caches>

• enable - If true, then the creation of dynamic caches will be enabled.

• min_dist - The minimum distance between blocks to be considered for cache creation from said blocks.

• min_blocks - The minimum # of blocks that need to within min_dist from each other to trigger dynamic cache
creation.

• robot_drop_only - If true, then caches will only be created by intentional robot block drops rather than drops
due to abort/block distribution after collection. Default if omitted: false.

2.3 XML Conventions

• Multiple choices for an XML attribute value are separated by a | in the example XML.

• XML attributes that should be floating point are specified as FLOAT in the example XML (acceptable range, if
applicable, is documented for each individual attribute).

2.3. XML Conventions 13

FORDYCA Documentation, Release 2.35.0.0

14 Chapter 2. XML Configuration

CHAPTER

THREE

CONTRIBUTING

3.1 Parser Tutorial

After you have added some new code to FORDYCA, you will (probably) need to be able to configure your new module(s)
from the input .argos file. To do that you need to define a new XML parser.

This is a tutorial for:

• Adding parameters to the input file

• Adding a parameter struct to the code for said input parameters

• Defining a parser for said input parameters

• Registering said parser so that it is called during initialization.

It assumes that you have already built the documentation for forydca and rcppsw and have some level of familiarity
with the XML parameter parsing.

3.1.1 Adding Parameters To Input File

1. Identify what parameters you want to add (i.e. what new knobs you want to be able to fiddle with).

2. Decide what type of parameter each of the new ones you want to add is: robot or simulation. Each type has a
different section of the input file that they have to go into.

Robot parameters are things that robots need to do whatever you’ve told them to do. Simulation parameters are for
things that are not specific to a single robot. Robot parameters are found under the robot controller section, and
simulation parameters under the loop function section (see exp/testing.argos for good examples of existing
parameters).

All your new parameters may be only in one category, and that’s fine.

3. Find an appopriate place in the input file to place said parameters. You should add at most 1 XML tag to the
robot/simulation parameter section of the input file (i.e. all your new parameters for each category should be able
to be grouped logically/hierarcically under a single XML tag). If you are not sure where is appropriate, ask.

Pick a GOOD name for the root XML tag you add, as that is very important for the next step.

For example, you might have:

<widget>
<subwidget
param1="10"
param2="FOOBAR"/>

</widget>

15

FORDYCA Documentation, Release 2.35.0.0

3.1.2 Adding _config Struct

At an appropriate location in the fordyca::config hierarchy, create a new configuration struct in a .hpp file. There
are literally dozens of examples to look at already present in the code, many of which are very simple.

• The parameter struct should be named <XML tag>_config to help with readability and the principle of
least surprise. For example, if your XML tag name is subwidget, then your parameter struct would be
subwidget_config. This is the Principle of Least Surprise at work.

• Each element of the parameter struct should have the SAME name as one of the XML attributes under the root
tag in the input file, to help with readability and the principle of least surprise. For example, if you have an
attribute called rate under <energy_consumption, then in energy_consumption_config you would also
have a member called rate, of whatever type is needed. This is enforced during parsing in the C++ code.

For our <subwidget> example, we would defined:

struct subwidget_config {
int param1;
std::string param2;

}

3.1.3 Defining an XML Parser

At an appropriate location in the fordyca::config hierarchy, create a new parser in .hpp/.cpp files. There are
literally dozens of examples to look at already present, many of which are very simple. The parser should be named
<XML tag>_parser to help with readability and the Principle of Least Surprise. For example, if your tag name is
subwidget, then your parser name would be subwidget_parser.

When creating your class, you must define the following inside the public access modifier:

• config_type - Set to the type of the config struct for your class. This is a convention/requirement that allows
lookup of the specific type of config a parser is parsing without casing on the parser name. Because of the above
conventions, this should be the name of your parser class, changing _parser to _config.

When creating your class, you must override:

• config_get_impl() - This returns a non-owning reference to the internal parsed config struct. If the config struct
has not been populated (e.g., the necessary tag for the parser to parse was not in the input .argos file), then it
should return nullptr.

• xml_root() - Return the name of the XML tree that your parser is parsing. Because of the conventions used,
this should be the name of your parser class, minus the _parser at the end.

• parse(): Does the actual parsing. The function is passed the ticpp::Element node of the parent XML tag
that your parser is parsing; this convention allows easy parser nesting and clean parsing regardless if an XML
tag is expected to exist or not.

For example, if you are defining a subwidget_parser class, you might have the following XML structure:

<widget>
<subwidget
param1="10"
param2="FOOBAR"/>

</widget>

With such an XML structure, your subwidget_parser::parser() function will be passed a reference to the
<widget> tree, and you will need to call node_get("subwidget") to get a reference to the XML tree rooted
at <subwidget>.

16 Chapter 3. Contributing

FORDYCA Documentation, Release 2.35.0.0

You MUST use the XML_PARSE_ATTR() macro to do most parsing, so that if you do not name struct members
with the same name as the input file attribute, you will get compile time rather than run time errors. If you want
to have an optional attribute, you can supply a default via XML_PARSE_ATTR_DFLT(). Otherwise, a missing
attribute will cause a run-time error.

A possible implementation for the .hpp file might be:

class subwidget_parser final : public rconfig::xml::xml_config_parser {
public:
using config_type = subwidget_config;

/**
* \brief The root tag that all XML configuration for exploration should lie
* under in the XML tree.
*/
inline static const std::string kXMLRoot = "subwidget";

void parse(const ticpp::Element& node) override;
std::string xml_root(void) const override { return kXMLRoot; }

private:
const rconfig::base_config* config_get_impl(void) const override {
return m_config.get();

}

/* clang-format off */
std::unique_ptr<config_type> m_config{nullptr};
/* clang-format on */

};

A possible implementation for the .cpp file might be:

void subwidget_parser::parse(const ticpp::Element& node) {
/* If our subtree not in input file, nothing to do */
if (nullptr == node.FirstChild(xml_root(), false)) {
return;

}
ticpp::Element vnode = node_get(node, xml_root());
m_config = std::make_unique<config_type>();

XML_PARSE_ATTR(vnode, m_config, param1);
XML_PARSE_ATTR_DFLT(vnode, m_config, param2, std::string());

} /* parse() */

When creating your class you can override:

• validate(): Does any validation of parsed parameters. Mainly used to make sure things like angles are always
> 0 but < 360, for example, which is not applicable to all parsers.

3.1. Parser Tutorial 17

FORDYCA Documentation, Release 2.35.0.0

3.1.4 Registering a New Parser

Depending on what controller/loop functions are going to need your parameters, you will need to register your parser
the corresponding parameter repository. For example, if I create an energy_consumption_parser for use by d0
controllers, I would register my parser with the d0_controller_repository via something like:

parser_register<energy_consumption_praser,
energy_consumption_config>(

energy_consumption_praser::kXMLRoot);

That’s it!

For the general contribution workflow, see the docs over in LIBRA.

18 Chapter 3. Contributing

https://swarm-robotics-libra.readthedocs.io

CHAPTER

FOUR

OTHER PROJECTS (IN DESCENDING PROBABILITY OF INTEREST)

• SILICON

• SIERRA

• COSM

• RCPPSW

• RCSW

19

https://swarm-robotics-silicon.readthedocs.io
https://swarm-robotics-sierra.readthedocs.io
https://swarm-robotics-cosm.readthedocs.io
https://swarm-robotics-rcppsw.readthedocs.io
https://swarm-robotics-rcsw.readthedocs.io

	Setup
	Building The Code
	Local Runtime Setup
	Runtime Issues

	MSI Setup

	XML Configuration
	Controller XML Configuration
	block_sel_matrix
	block_sel_matrix/block_priorities
	block_sel_matrix/pickup_policy

	cache_sel_matrix
	cache_sel_matrix/pickup_policy

	strategy
	perception
	perception/dpo
	perception/dpo/pheromone

	perception/mdpo

	Additional notes to COSM controller docs
	task_alloc/stoch_nbhd1
	task_alloc/task_exec_estimates

	Loop Functions XML Configuration
	temporal_variance/env_dynamics/caches
	temporal_variance/caches/usage_penalty
	arena_map/caches

	arena_map/caches/static
	arena_map/caches/dynamic

	XML Conventions

	Contributing
	Parser Tutorial
	Adding Parameters To Input File
	Adding _config Struct
	Defining an XML Parser
	Registering a New Parser

	Other Projects (in descending probability of interest)

